Построение сечений тетраэдра и параллелепипеда


The Presentation inside:

Slide 0

Построение сечений тетраэдра и параллелепипеда Подготовил : Михеев Никита 10 «Б»


Slide 1

Содержание: Цели и задачи Введение Понятие секущей плоскости Определение сечения Правила построения сечений Виды сечений тетраэдра Виды сечений параллелепипеда Задача на построение сечения тетраэдра с объяснением Задача на построение сечения тетраэдра с объяснением Задача на построение сечения тетраэдра по наводящим вопросам Второй вариант решения предыдущей задачи Задача на построение сечения параллелепипеда Задача на построение сечения параллелепипеда Источники информации


Slide 2

Развитие пространственных представлений у учащихся. Познакомить с правилами построения сечений. Выработать навыки построения сечений тетраэдра и параллелепипеда при различных случаях задания секущей плоскости. Сформировать умение применять правила построения сечений при решении задач по темам «Многогранники». Цель работы: Задачи:


Slide 3

Для решения многих геометрических задач необходимо строить их сечения различными плоскостями.


Slide 4

Секущей плоскостью параллелепипеда (тетраэдра) называется любая плоскость, по обе стороны от которой имеются точки данного параллелепипеда (тетраэдра).


Slide 5

Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам. Многоугольник, сторонами которого являются данные отрезки, называется сечением тетраэдра (параллелепипеда).


Slide 6

При этом необходимо учитывать следующее: 1. Соединять можно только две точки, лежащие в плоскости одной грани. Для построения сечения нужно построить точки пересечения секущей плоскости с ребрами и соединить их отрезками. 2. Секущая плоскость пересекает параллельные грани по параллельным отрезкам. 3. Если в плоскости грани отмечена только одна точка, принадлежащая плоскости сечения, то надо построить дополнительную точку. Для этого необходимо найти точки пересечения уже построенных прямых с другими прямыми, лежащими в тех же гранях.


Slide 7

Какие многоугольники могут получиться в сечении ? Тетраэдр имеет 4 грани В сечениях могут получиться: Четырехугольники Треугольники


Slide 8

Треугольники Параллелепипед имеет 6 граней Четырехугольники Шестиугольники Пятиугольники В его сечениях могут получиться:


Slide 9

Построить сечение тетраэдра DABC плоскостью, проходящей через точки M,N,K Проведем прямую через точки М и К, т.к. они лежат в одной грани (АDC). 2. Проведем прямую через точки К и N, т.к. они лежат в одной грани (СDB). 3. Аналогично рассуждая, проводим прямую MN. 4. Треугольник MNK – искомое сечение.


Slide 10

Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C D M 1. Проводим КF. 2. Проводим FE. 3. Продолжим EF, продол- жим AC. 5. Проводим MK. 7. Проводим EL EFKL – искомое сечение Правила


Slide 11

Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. E F K L A B C M D Какие точки можно сразу соединить? С какой точкой, лежащей в той же грани можно соединить полученную дополнительную точку? Какие прямые можно продолжить, чтобы получить дополнительную точку? F и K, Е и К ЕК и АС С точкой F Соедините получившиеся точки, лежащие в одной грани, назовите сечение. ЕLFK Правила Второй способ


Slide 12

E F L A B C D О Построить сечение тетраэдра плоскостью, проходящей через точки E, F, K. K Первый способ Правила


Slide 13

Вывод: независимо от способа построения сечения одинаковые. Способ №1. Способ №2.


Slide 14

A1 А В В1 С С1 D D1 Построить сечение параллелепипеда плоскостью, проходящей через точки M,A,D. М 1. AD 2. MD 3. ME//AD, т.к. (ABC)//(A1B1C1) 4. AE 5. AEMD – сечение. E


Slide 15

A1 А В В1 С С1 D D1 M N Построить сечения параллелепипеда плоскостью, проходящей через точки В1, М, N O К Е P Правила 1. MN 2.Продолжим MN,ВА 4. В1О 6. КМ 7. Продолжим MN и BD. 9. В1E 5. В1О ? А1А=К 8. MN ? BD=E 10. B1Е ? D1D=P , PN 3.MN ? BA=O


Slide 16

Источники информации 1. Геометрия 10-11:учебник для общеобразоват. учреждений / Л.С.Атанасян, В.Ф.Бутузов и др.,М.Просвещение 2. Задачи к урокам геометрии 7-11 классы / Б.Г.Зив,С.-Петербург, НПО «Мир и семья», изд-во «Акация». 3. Математика: Большой справочник для школьников и поступающих в ВУЗы / Д.И.Аверьянов, П.И.Алтынов – М.: Дрофа


Slide 17

Внимание! СПАСИБО ЗА ВНИМАНИЕ. Штраф пятерка !


×

HTML:





Ссылка: