Непозиционные системы счисления


The Presentation inside:

Slide 0

Непозиционные системы счисления Единичная система счисления Древнеегипетская десятичная система счисления Римская система счисления Алфавитные система счисления далее


Slide 1

Древнеегипетская десятичная система счисления Возникла во второй половине третьего тысячелетия до н.э. Бумагу заменяла глиняная дощечка, и именно поэтому цифры имеют интересное начертание. В этой системе счисления использовали в качестве цифр ключевые числа 1,10,100,1000 и записывались они с помощью специальных иероглифов. Из комбинации таких цифр записывались числа. Например, число 2342 «рисовалось» так: -Единицы -Десятки -Сотни -Тысячи содержание далее


Slide 2

Единичная система счисления В древние времена, когда люди начали считать, появилась потребность в записи чисел. Количество предметов, например мешков, изображалось нанесением черточек или засечек на какой-либо поверхности: камне, глине, дереве. Каждому мешку в такой записи соответствовала одна черточка. Археологами найдены такие «записи» при раскопках культурных слоев (10-11 тыс.лет до н.э.) Ученые назвали этот способ записи чисел единичной системой счисления. Неудобства такой системы счисления очевидны: чем больше число надо записать, тем больше палочек. Отголоски такой системы счисления встречаются и сегодня: малыши на пальцах показывают свой возраст, счетные палочки используются для обучения счету учеников 1 класса. содержание далее


Slide 3

Алфавитные система счисления Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились славянская, ионийская (греческая), финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен(от 100 до 900) обозначались буквами алфавита. Алфавитная система была принята и в древней Руси. Чтобы отличать буквы от цифр над буквами ставился специальный знак титло содержание далее


Slide 4

Римская система счисления В римской системе счисления для обозначения чисел используются знаки I V X L С D M 1 5 10 50 100 500 1000 содержание далее


Slide 5

Римская система счисления Правила: (обычно) не ставят больше трех одинаковых цифр подряд Число равно разности двух «цифр», если слева от большей «цифры» стоит меньшая В остальных случаях значения «цифр» складываются Примеры: MDCXLIV= 2389 = 2000 + 300 + 80 + 9 2389 = M M C C C L X X X I X M M CCC LXXX IX содержание далее 1000 + 500 + 100+ (50-10) +(5-1) =1644


Slide 6

Римская система счисления Правила: (обычно) не ставят больше трех одинаковых цифр подряд Число равно разности двух «цифр», если слева от большей «цифры» стоит меньшая В остальных случаях значения «цифр» складываются Примеры: MDCXLIV= 1000 + 500 + 100 - 10 + 50 – 1 + 5 2389 = 2000 + 300 + 80 + 9 2389 = M M C C C L X X X I X M M CCC LXXX IX = 1644 1000 + 500 + 100 – 10 + (50 )– 1 + 5 содержание далее


Slide 7

Проверь себя 1.Какие числа записаны с помощью римских цифр: a)ММIV б) LXV 2. Запишите число 25 а)в древнеегипетской системе счисления б)в древнеславянской системе счисления в) в римской системе счисления 3.Исправьте неверные равенства, переложив с одного места на другое только одну палочку а)VII-V=XI б)VI-I=III содержание далее


Slide 8

Как я понял материал? Ответь на следующие вопросы и оцени результат проделанной работы: Справился ли я с заданием? Какие трудности возникали? В затруднениях разбирался сам или с помощью товарища (учителя)? Помогал ли я кому-нибудь? содержание


×

HTML:





Ссылка: