Физика ядерной энергетики.Ядерное оружие


The Presentation inside:

Slide 0

Физика ядерной энергетики. Ядерное оружие Некрасов К.А., УГТУ - УПИ


Slide 1


Slide 2

Энергия в обычном мире Тепловая энергия движения молеку-лы при комнатной температуре составляет примерно 0.03 эВ. Потенциальная энергия атома урана в поле тяготения Земли на высоте 100 м равна 0.0024 эВ


Slide 3

Энергия химических связей Электронные оболочки атомов в молекулах и кристаллах связаны энергиями порядка 1 - 100 эВ на атом. Например, при полном сгорании углерода выделяется энергия, равная 4.08 эВ на один атом


Slide 4

Ядерная энергия О ядрах атомов и ядерной энергии до начала 20-го ве-ка не было даже известно. В 1986 году Анри Беккерелем была обнаружена радиоактивность, а в 1909-1911 гг. Эрнст Резерфорд предположил и доказал существование атомного ядра


Slide 5

Значение нейтрона


Slide 6

Расщепление ядра Поскольку нейтрон не заряжен, для сближения с ядром ему не нужна высокая скорость. В области действия ядерных сил (10-12 м), нейт-рон «падает» на ядро. При этом выделяется энергия около 7 МэВ.


Slide 7

Цепная реакция деления ядер


Slide 8

Барий – примерно в 2 раза более лёгкий элемент, чем уран. Австрийские физики Лиза Мейтнер и Отто Фриш объяснили его появление делением ядер. Деление ядра урана на два осколка В середине 1930-х никто, включая Сцилларда и Ферми, ещё не ожидал, что уран будет делиться нейтронами на два больших осколка. В 1939 году Отто Ган и Фриц Штрассман обнаружили в облучён-ном нейтронами уране барий.


Slide 9

Цепная реакция деления урана Были обнаружены и нейтроны, вылетающие из ядра после деления. Свои результаты практически одновременно, в марте 1939 г., опубликовали французский физик Фредерик Жолио-Кюри, а также Ферми и Сциллард. Получалось, что на одно поглощение нейтрона ядром урана приходится (в среднем) примерно 2 новых нейтрона. Цепная реакция деления ядер урана оказалась возможной!


Slide 10

Изотопы природного урана


Slide 11

Плутоний и другие трансурановые элементы Ещё Ферми и Сциллард ожидали, что ядро урана может поглощать нейтроны с образова-нием новых элементов. В 1941 году Гленн Сиборг (Glenn Seaborg) синтезировал плутоний по реакции Им же затем были получены и другие трансурановые элементы, вплоть до 102 номера таблицы Менде-леева. Большинство из этих элементов, как уран - 235, легко делятся нейтронами, так что могут служить ядерным горючим.


Slide 12

Делящиеся изотопы


Slide 13

Делящиеся изотопы


Slide 14

Критические масса и радиус Длина свободного пробега нейтронов между столкнове-ниями огромна, она составляет несколько сантиметров. В малых количествах делящегося вещества утечка нейтро-нов останавливает цепную реакцию. Для поддержания реакции необходимы препятствующие утечке критический радиус и соответствующая критическая масса вещества. Утечка нейтронов Цепная реакция


Slide 15

Реактор на природном уране


Slide 16


Slide 17

Структура ядерного реактора


Slide 18

Атомная бомба пушечного типа. Соединение подкритических частей Длина: 3.05 м; Диаметр: 0.76 м; Полная масса: 3.6 тонны; Масса ядерного заряда: 42 кг, обычного заряда (TNT) – 900 кг. Энергия взрыва: 12-15 килотонн.


Slide 19

Бомба имплозивного типа . Сжатие обычным взрывом


Slide 20

Бомба имплозивного типа. Сжимающий взрыв, направленный в центр Взрыв, направленный точно в центр, обеспечивается сложной комбинацией «линз» из быстрой и медленной взрывчатки


Slide 21

Термоядерные реакции


Slide 22

Термо-ядерный заряд В качестве термоядерного заряда используют газовую смесь дейтерия (D ? 2H) и трития (T ? 3H) :  D + T ? 4He + n + 17.6 МэВ


Slide 23


Slide 24


Slide 25


Slide 26


Slide 27


Slide 28

Современное ядерное оружие


Slide 29

За период от 1945 по 1990 г. каждая из двух стран, СССР и США, произвела более 70 тыс. ядерных боезарядов. Известно, что в США производились боеголовки диаметром менее 15.5 см и весом около 45 кг при мощности 0.1 кТ. Легчайшая боеголовка в США (W54) весила 23 кг при мощности 0.25 кТ. Несекретные расчёты в 1990 гг. показали, что сравнительно простые имплозивные устройства могут иметь диаметр порядка 50 см с весом менее 200 кг. Современное ядерное оружие


Slide 30

Современное ядерное оружие Страны с менее развитой ядерной энергетикой вполне могут добиться массы 500-1000 кг для бомб с мощностью в 10-30 килотонн. Подготовленная террористическая группа, вероятно, могла бы сделать бомбу массой 1000-1500 кг мощностью 1 – 10 килотонн. The Davy Crockett Bazooka


Slide 31

Источники данных и материалов


×

HTML:





Ссылка: