Тот, кто не смотрит впередоказывается позадиД. Герберт


The Presentation inside:

Slide 0

Тот, кто не смотрит вперед оказывается позади Д. Герберт


Slide 1

Лекция №4


Slide 2

Ретросинтетический анализ


Slide 3

Ретросинтетический анализ Серия блестящих синтезов, выполненных в группе Кори В своей Нобелевской лекции Кори специально подчеркнул, что “ключом к успеху множества многостадийных синтезов, которые были осуществлены в нашей лаборатории за последние годы, было изобретение новой методологии”


Slide 4

Ретросинтетический анализ Включает анализ особенностей структуры ЦМ и последующие манипуляции со структурами в направлении, обратном синтезу


Slide 5

Основные понятия ретросинтетического анализа Целевая молекула – TM (target molecule) или ЦМ Молекулярная сложность В основе ретросинтетического анализа лежит идея постепенного уменьшения молекулярной сложности


Slide 6

Основные понятия ретросинтетического анализа Проводят последовательное упрощение структуры ТМ в соответствии с определенными правилами до тех пор, пока не будет получено доступное соединение, либо такое соединение, способ синтеза которого известен


Slide 7

Пример ретросинтетического анализа


Slide 8

Основные понятия ретросинтетического анализа Мысленно проводимые реакции, обратные реакциям синтеза, называются трансформами (Tf) (Трансформации – переход от соединения к ближайшему предшественнику) Для того чтобы отличить трансформ от реальной реакции, используют двойную стрелку


Slide 9

Пример Цветные двойные стрелки – трансформации Изменяющиеся связи выделены цветом


Slide 10

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Расчленение D (disconnection): расчленение цепи - CHD (chain disconnection) расчленение цикла - RGD (ring disconnection) отщепление функциональной группы - FGD (functional group disconnection) отщепление ответвления - APD (appendage disconnection)


Slide 11

Основные понятия ретросинтетического анализа Термин "расчленение" означает мысленно проводимый разрыв связей, дающий последовательно более простые молекулы-предшественники, но всегда таким путем, чтобы эти связи могли быть вновь созданы известными или разумными химическими реакциями


Slide 12

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Cочленение R (reconnection): сочленение в цикл - RR (ring reconnection)


Slide 13

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Введение функциональной группы - FGA (functional group addition)


Slide 14

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Замена одной функциональной группы на другую - FGI (functional group interconvertion)


Slide 15

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Перегруппировка - Rt (rearrangement)


Slide 16

Основные понятия ретросинтетического анализа Наиболее часто в анализе встречаются следующие типы трансформов: Tf гидрирования Tf Дильса-Альдера и др.


Slide 17

Ретросинтетический анализ Мы шаг за шагом изменяем ТМ в соответствии с известными нам реакциями, пока не придем к доступному соединению На каждом шаге следует проверять, существует ли реальная реакция (в направлении синтеза), соответствующая данному трансформу


Slide 18

Пример ретросинтетического анализа


Slide 19

Ретросинтетический анализ После анализа можно написать схему синтеза


Slide 20

Пример анализа


Slide 21

План синтеза


Slide 22

Ретросинтетический анализ К одному и тому же соединению можно прийти различными синтетическими путями - в общем случае анализ данной ТМ разветвляется


Slide 23

Ретросинтетический анализ Полученные варианты разбиения молекулы анализируется далее В результате получается "дерево синтетических интермедиатов" или "дерево синтеза"


Slide 24

Пример анализа


Slide 25

Правила анализа Связь, которую разрываем, должна создаваться малой последовательностью реакций, а лучше - одной реакцией Разорванные связи должны создаваться реакциями, включающими ионные интермедиаты (в редких случаях - рекомбинацией радикальных частиц)


Slide 26

Пример анализа частицы (4d), (5a), (4a) и (5d) называются синтонами


Slide 27

Основные понятия ретросинтетического анализа Синтон – фрагменты остова в ЦМ, которые создаются в результате синтеза и присутствуют в реагенте Идеализированный фрагмент (катион, анион, радикал, карбен), возникающий в результате трансформа расчленение (D) Синтетический эквивалент – реальный реагент, который содержит синтон


Slide 28

Ретросинтетический анализ Одна из задач ретросинтетического анализа - найти реальные реагенты, соответствующие синтонам


Slide 29

Синтоны и реагенты


Slide 30

План синтеза Исключают не реализуемые варианты из рассмотрения Остальные варианты анализируют дальше Выбирают наиболее оптимальный путь


Slide 31

Синтоны а-синтоны - с акцепторным атомом, имеющим положительный заряд d-синтоны - с донорным атомом, заряженным отрицательно атомы С в углеродной цепи подразделяются на атомы а- и d-типа


Slide 32

Синтоны Если углеродная цепь представляет собой полностью сопряженную систему, в ней наблюдается альтернирование донорных и акцепторных атомов


Slide 33

Синтоны Такое же альтернирование акцепторных и донорных центров имеется и в насыщенной углеродной цепи с акцепторным атомом на конце


Slide 34

Синтоны Синтоны, получающиеся при расчленении такой цепи, могут получить заряды, соответствующие этой "естественной" полярности ("естественные", или "логичные" синтоны)


Slide 35

Синтоны Если же заряды синтонов не соответствуют "естественному" альтернированию донорных и акцепторных атомов в углеродной цепи, говорят о синтонах с обращенной полярностью ("umpoled synthons")


Slide 36

Принципы планирования синтеза из заданного исходного соединения Определите положение остова исходного соединения в ТМ Проведите расчленение связи, которая дает максимальное упрощение структуры, лучше всего "малым укусом" (small bite) разбить молекулу на два крупных «осколка»


Slide 37

Принципы планирования синтеза из заданного исходного соединения Припишите продуктам расчленения заряды - при этом получатся синтоны Найдите реагенты, соответствующие этим синтонам Выберите наилучшую комбинацию синтонов с учетом соответствующих им реагентов


Slide 38

Принципы планирования синтеза из заданного исходного соединения Повторите процедуру до тех пор, пока не найдете способы построения всех интересующих Вас С-С связей Обратите ретросинтетическую процедуру и напишите схему синтеза


Slide 39

Ретросинтетический анализ Как правило, известна лишь структура молекулы целевого соединения (ТМ) В этом случае в начале анализа не известно, к каким исходным соединениям мы придем Ясно лишь, что эти исходные соединения должны быть доступными


Slide 40

Ретросинтетический анализ Решение можно найти с помощью последовательных расчленений ТМ Очень важен правильный выбор расчленений и соответствующих трансформов Предпочтение следует отдавать таким трансформам, которые дают максимальное упрощение структуры молекулы


Slide 41

Конвергентные схемы синтеза


Slide 42

Ретросинтетический анализ «Мощные реакции» - в одну стадию приводят к значительному усложнению молекулы (циклизация, существенная реорганизация молекулы, мало реакционноспособные функциональные группы могут превратиться в высоко реакционноспособные) О подобных мощных реакциях следует всегда помнить при конструировании дерева синтеза


Slide 43

Карбоциклическая реакция Дильса-Альдера


Slide 44

Гетеро-реакция Дильса-Альдера


Slide 45

Аннелирование по Робинсону


Slide 46

Парциальное восстановление по Берчу


Slide 47

Катионная ?-циклизация


Slide 48

Внутримолекулярная радикальная ?-циклизация


Slide 49

Альдольная конденсация


Slide 50

Ацилоиновая конденсация, приводящая к карбоциклам


Slide 51

Внутримолекулярное нуклеофильное замещение, приводящее к циклизации


Slide 52

Внутримолекулярное ацилирование по Фриделю-Крафтсу


Slide 53

Катионные перегруппировки


Slide 54

Конденсация Манниха


Slide 55

Еновая реакция


Slide 56

Синтез индолов по Фишеру


Slide 57

Синтез пирролов по Кнорру


Slide 58

Сигматропная перегруппировка Кляйзена


Slide 59

Сигматропная окси-перегруппировка Коупа


Slide 60

Олефинирование по Виттигу


Slide 61

Ретросинтетический анализ Важный вопрос, который возникает в ходе ретросинтетического анализа: в каком месте молекулы лучше всего провести расчленение? На следующей лекции


Slide 62

С Международным женским днем!


Slide 63

Контрольно задание №4 Получите синтоны расчленением целевой молекулы и предложите реагенты, соответствующие этим синтонам


×

HTML:





Ссылка: